返回首页
当前位置: 主页 > 互联网技术 > 数据挖掘 >

数据挖掘能做什么

时间:2014-10-04 00:10来源:电脑教程学习网 www.etwiki.cn 编辑:admin

1)数据挖掘能做以下六种不同事情(分析方法):


  · 分类 (Classification)


  · 估值(Estimation)


  · 预言(Prediction)


  · 相关性分组或关联规则(Affinity grouping or association rules)


  · 聚集(Clustering)


  · 描述和可视化(Description and Visualization)


  · 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)


  2)数据挖掘分类


  以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘


  · 直接数据挖掘


  目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。


  · 间接数据挖掘


  目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。


  · 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘


  3)各种分析方法的简介


  · 分类 (Classification)


  首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。


  例子:


  a. 信用卡申请者,分类为低、中、高风险


  b. 故障诊断:中国宝钢集团与上海天律信息技术有限公司合作,采用数据挖掘技术对钢材生产的全流程进行质量监控和分析,构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。


  注意: 类的个数是确定的,预先定义好的


  · 估值(Estimation)


  估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。


  例子:


  a. 根据购买模式,估计一个家庭的孩子个数


  b. 根据购买模式,估计一个家庭的收入


  c. 估计real estate的价值


  一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。


  · 预言(Prediction)


  通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。


  例子: 海南航空引入领先的数据挖掘工具马克威分析系统,分析客流、燃油等变化趋势,以航线收益为主题进行数据挖掘,制定精细的销售策略,有效提高了企业收益。


  · 相关性分组或关联规则(Affinity grouping or association rules)


  决定哪些事情将一起发生。


  例子:


  a. 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)


  b. 客户在购买A后,隔一段时间,会购买B (序列分析)


  · 聚集(Clustering)


  聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。


  例子:


  a. 一些特定症状的聚集可能预示了一个特定的疾病


  b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群


  聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。


  c. 中国移动采用先进的数据挖掘工具马克威分析系统,对用户wap上网的行为进行聚类分析,通过客户分群,进行精确营销。


  · 描述和可视化(Des cription and Visualization)


  是对数据挖掘结果的表示方式。

 

------分隔线----------------------------
标签(Tag):数据挖掘
------分隔线----------------------------
推荐内容
猜你感兴趣